TO DETERMINE THE GEODESIC CURVATURE OF A SURFACE
CURVE BY ITS TRANSFORMED PLANE CURVE

by Hsieh Wan-chen

§ 1. Introduction

The generalization of the the criterion of parallelism with respect to a surface from
that with respect to a plane has been given by Levi-Civita. From this point of view
the geodesic curvature will be discussed as the curvature of a plane curve in this
paper. This means that we can find the geodesic curvature from the curvature defined
for the plane curve.

§ 2. Parallelism with respect to a surface

In Euclidean plane geometry, when two points P} and P2 are fixed, then to every

direction drawn from P there corresponds one and only one direction drawn from Py
and parallel to the first. That is the ordinary sense of. parallelism with respect to a
plane, .
Let P; be a point of surface S, T'; the corresponding tangent plane (at P;), and R;
an arbitrary tangent-vector drawn from P and therefore lyinging in T1. Similary, Rz
is a tangent vector drawn from another point Pz of S, and therefore lying in the
corresponding tangent plane Ta. '

If S is developable, it can be defined that the two vectors R; and R, are parallel,.
if they are parallel in the ordinary sense when S is developed upon a plane. This
criterion fails in the case of' a non-developable surface, such as a sphere, and it is
natural to Iook for an adequate generalization of parallelism. Let P; and P2 be
connected by a specific curve C lying in S, then a developable surface St can be
constructed by the tangent planes along C. The tangent vectors R; and Rz at P; and
P; are also tangential to Sv. Thus, it can be made the definition of surface parallelism
on the non-developable S along C as the parallelism on Sy has just been defined. Of
course, this parallelism depends on the specific curve C.

As shown in Fig, 1,‘R1 and R are parallel in the sense of Levi-Civita parallelism,
P and P are consecutive points of C on S, and - w is the infinitesimal vector representing
the elementary rotation around the straight line g by means of which T2 is brought
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into coincidence with T'1. Thus, when R; takes
“the parallel displacement* from P; to Pp, it can
be found
dR1=wXxR;
As both wand R are vectors in T, it follows
that ‘the increment is perpendicular to T, that is
dR: [| n (2—1)
where g is the normal to T';. This is the cond-
ition for infinitesimal parallel displacement.
Knowing dR1 is perpendicular to-all directions
of infinitesimal displacement in S, we can conclu-
de that ’

dY't 8yt =o (2—2)

where 8yt are the components of the infinitesimal vector of displacement and dY‘ are
the components of dR, in Cartesian coordinates.
Since 8y are the components of a displacement along S, they can be expressed
in term of the corresponding variations é#%* of the surface coordinates, that is
8yt =§%;8u°' # (2-3)
As the vector Rj, with magnitude R, is tangential to S, it can be represeﬁted by
R% =R\ (2—4)

du> . X
where )\.“~7i? are parameters of the direction, then

dy! L oy! du® oyt
=R —5
Y ds Rau“ ds a‘u“Ro‘ (2—5)
Putting
. auyi
Ca a-u“d (GZsRP) (2—6)

then the identity (2-2) can be written finally in the form

Co OU¥ =0 (21
Since 8u* are completely arbitrary, it follows from Eq. (2-7) that
Tou=0 ‘ (2—8)

Carrying out the differentiation of Eq. (2-6) and inserting gap=:—%& :‘;u_ﬁ’ yields

* Let the vector at P take a parallel motion along C, the transformed curve of €, to another point
Q in the plane on which Sy was developed, then wrap the plane about S in its original form and
position. The vector is said to have parallel displacement at its new position.

# In general in what follows Latin indices take the values 1, 2, 8 and Greek indices the values 1, 2.



2 - To Determine The Geodesic Curvature of a Surface
W oE = M Curve by Its Transformed Plane Curve 29

ayi a‘yi a?yi
Cou=gus LR+ RT L e due]
=gy3s dR?+[ye, ] RY duc

where C* depend upon two vectors (R* and the displacement du*) as well as the

coefficients of ds? and their first derivatives. So that it can be thought of as a covariant

and its contravariant can be written in the form

TP =Cag*? =dR >+ {FLIRY duc : (2-9)
it follows from Eq. (2-8) and Eq. (2-9) that the condition (2—1) is equivalent to

dR? dR" 3 dus _

s ds PR e oy =0 (2—10)

B
where §§~ is the intrinsic derivative of R?

§3. Geodesic curvature of a surface curve and the curvature of its

transformed plane curve

Let equations of the curve C lying in the surface

A xi=xt, (ut, u?) (3—1)
be given in the form _
C: u*=u* (s) (3—2)

where s is the arc parameter.

Let a system of unit vector R% (s) be parallel with-respect to C. The angle 0, in
Levi-Civita sense, made by K* and the unit tangent vector A* (s) at each point of C
can be written as ' .

sin 0=Exn A* RP ' (3—3)

Differentiating intrinsically the Eq. (3-3), and then substituting Eq. (2;—10),

SEor .
cosf=gxs A* R? and 55~ =0, gives

or
do OA® .

RP (Asge—Eapgg) =0 3—4)

Since the angles formed by two families of parallel vectors along a curve C are equal

at each point, tle expression in the parentheses of Eq. (3—4) is independent of the
choice of R%, and consequently

deo O\E

84U _ o OAT5p —b

ds ~Eer g™ (-5
If only the numerical value of %gis considered, Eq. (3-5) can be written as

% [r€, o] are the Christoffel symbol of the first kind, and{‘rﬂe}are the second kind.
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dzwB dur du€., dus
=¢ up Cpg {fé}ﬁ' a5’ ds (3—6)

where e always makes &%P %4\“ positive,

Now let A! be the space components of the tangent vector A%, then
}\“ *d__xl oul du’x

ds  ou* ds
Differentiating Eq. (8-7) intrinsically with respect to s, gives

Sl Lau” 8?»

—xl A® (31

"S5 =Zop A ds THa sy ) 3-8
Put

A% ' SA

=Py, =K u (3—9)

where P is a suitable scalar that mekes % a unit vector, K is the curvature and both
7% and p' are perpendicular to A%,

Substitution of Eq. (3-9) and xk,p=bxp #' (Gauss’s formula) into Eq. (3-8), gives
=byp A* AP nl 4Pyt ' (3—10)
where n! is the unit vector normal to S at P and #nt=ux} #* Multipling both sides of

Eq. (3-10) by % and substituting nig; =o, yields
K pt 9y =Pyin;
or
K sin p=p (3—11)
ih which @ is the angle between u! and #n'.
rom Eq. (3-9) and Eq. (3-11), Eq. (8-6) can be found as
‘ Zf ]—e Eap 7* MNP K sin @
=¢ K sin p=e K, (3—12)
Note that K, is the geodesic curvature of C at P by definition, therefore Eq. (3-12)
means that the rate of change of the unit tangent A* with respect fo s subject to the

Levi-Civita sense of parallelism, and ‘the geodesié curvature are equal in numerical
value. From §2 and the definition of curvature of the plane curve, %% can be considered

as the curvature of the plane curve € which is the transformed curve of C by the Levi-
Civita method. Hence from this viewpoint, the geodesic curvature of C can be found by
means of the curvature of ¢, if its sign is neglected.

§4. IHustrative examples

1: The curve lies on a developable surface.
A circular cylinder
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Yi=a (l4cos 2u) , Y>=aq sin2u, Yi=v (4—1)
intersects the sphere A

yl=2a sin « cos B, y<=2a sin « Sin 3, y3=2a cos 8
. at the curve C whose equations in the first octant are '
Yi=a (1+cos 2p), y2=a sin2p, y3=2a sin @ . (4—2)

where 0L @ é%;.

If C is considered as a curve on the cylinder
(4-1), find the geodesic curvature of C.

Solution: Developing the cylinder (4-1) upon
the xy-plane in such a way that the semi-circle C’
(see Fig. 2) maps into the positive x-axis with the
origin correspondiflg to P, yields the transforma-
tion .
x=2ap ., y=2a Sin ¢

(o Zp L9y (4-8)

Which is the equation of the plane curve € corresponding to the surface curve C. Then
the geodes1c curvature of C found from Eq. (3-12) is the curvature of T, ie.
dx d2y dy d?x ’
i‘ dp dp2  do dp?
= *—%*——'—‘——-hgﬁ
2 -+ 20y
(G0 + (o

— 4 a2 sin sin

- in o i=_____;a__T | (4—1)
(4 a2+4 a2 cos?2 @)2  2a (1+cos2 )7

It is easy to check this result from the original definition. Differentiating Eq. (4-2)

with respect to s, yields

%%———Za sin 2 @- Z,Z) ’ %%HZa cos er‘—ig— , ‘g; =2a 003¢dd¢; ’ - (4—-5)
From Eq. (4—5), ds can be found as
. ds=2a (1+cos? ¢)¥de
And heﬁce ‘ : .
dv 1 dv__ _cosp
ds 2a (1+0052¢);” ’ ds ( 1+cos2cp)§_’
d2u __ sinp cos @ d2y —sing / (4—6)

ds? g2 (1+cos? <p)2 dsz T 2a (1+cosZ<p)2
The coefficients of the first fundamental form of the cylinder (4-1) can be found to be
| n=e 5 g,=gn=0 , gy =1 : =7

Substituting Eq. (4-6) and Eq. (4-7) into Eq. (3-6) and noting that{:é}=o,

o
7&°‘=%, gives

42 du d2u dy
eKo=e (81257 g5+ €21 3 o)
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—  —Sin — Sinp cos2
—e (Vg 2 SRR COSP
4a2 (1+cosZ<p)2 da? (1+cos2p)?
—~Sin @ sin @

=€ —— 3 3
2a (1+cos2p)? 2a¢ (1+cos?p)?

Noting that Eqg. (4-8) and Eq. (4-4) are the same, this is the result.
2. The curve on the non-developable surface.

(4—8) K

Find the geodesic curvature of the small circle .
C. yl=a sinp cosvr , Y2=a sing sinfy , ¥3=a cosp , (4—9)
(p=constant) on the sphere
S: yl=a sinp cosyr , Yi=a sinp Sin
y3=a cosp (4—10)
Solution: As shown in Fig. 3, the developable surface
Sy made by the tangent planes along C is a right circular
cone, If S,y is developed upon a plane, the small circle C
maps into the curve
C: x=a tan @ cosw , Y=a lan ¢ Sin w
’ (4--11)
where w=+r cos ¢ , @=constant , o0LWL2nw cOs p.
The curvature of € is the geodesic curvature of C as
discussed in §3, such that, from Eq. (4-11)
4x d2y dy d2x |
dag dw dw? dw dw7 __a? tancp 1

7; ) C de )2+ (dy yoys| (@ tan @)3 “atan @

eK, =

(4—12)

Novv let us find K, of C directly from the right side of Eq. (3-6). From Eq. (4 10),
it is easy to find

g,,=a% sinp , §,=0 5 g,,=a? (4-—13)
Using Eq. (4-13) and noting that <p=coristant on the curve C gives, from Eq. (3-6),

d2uP [ \dur du¢, du*_ @ dur du®. dr
eKy=etap Cyoz {re}ds s ds e (e Cds2+{1e}ds “ds? ds

1ldur d — dur du€ dv
+ &2 <a’sZ {re}ds (p ) ]_ ev'g {TE} ds ds ds

=ev'g {11} ( "’) =evg 9“ [1106]( '

aZSme
e ]/-[1121< Y=o (LD (a2sing c05p) (5igns"
1 JRCEN
a lang ’

‘This is the same result as Eq. (4-12).
It is clear that this result can be found more easily by geometrical method from
Fig. 3.
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§5. Conclusion and discussion
In special cases when Eq. (3-2) is a plane curvé, then ¢ is identical with C. If #l=yx,
u2=y are taken, then gi1=g2=1, Li2=0; {fé}=o; and the Eq. (3-6) becomes

FITY ¥ o
It is evident that Eq. (5-1) is the formula of the curvature of the plane curve.

We have seen from §3 that the determination of the geodesic curvature of a surface
curve reduces to that of the curvature of its transformed plane curve, so that the
determination of the geodesic curvature of a surface curve needs only the developed
plane curve c.

It is evident that the illustrative examples are selected for the sake of easiness and
the calculations are simpler than usual. In general, the suitable transformation between |

C and C should be found in advance.
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